The Free Particle - Getting Started

Goals and Introduction

In this in-gagement you will study the simplest physical situation, an object that has no forces acting on it and thus has a constant potential energy everywhere.
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A constant potential energy diagram

Classically, a particle in this situation is referred to as a free particle.  Its motion is simple, it travels from left to right (or right to left) with a constant speed (which is related to the difference between the total and potential energies).  To study the "motion" of a quanta in this energy diagram we will solve the time independent Schrödinger equation with a constant potential energy to get the eigenfunction(s) and then write down the corresponding wave function(s).  From these wave functions you can write down the probability density function and calculate various expectation values.  You will discover that there are several ways of writing a general solution to this problem and you will learn which work best in what situations and how to switch from one form to another.

This in-gagement also introduces you to the computer program Wave Function Explorer and uses it to explore the shapes and behaviors of various wave functions.  During this exploration you will learn about stationary states, standing waves, and traveling waves and begin to learn about quantum scattering.

Basic solution

Recall that we are seeking solutions (wave functions) to the one-dimensional Schrödinger equation:
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(Equation 1)

and that we will obtain those wave functions using separation of variables:
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(Equation 2)

Also recall that we find the eigenfunctions, ψ(x), from the time-independent Schrödinger equation which is the result of combining equations 1 and 2:
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(Equation 3)

If the potential energy function is a constant (V(x) = V) then equation 3 can be written as: 
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(Equation 4)

Equation 4 should look familiar to you from some courses you have taken in the past - it is one of the simplest second order ordinary differential equations.  If we assume for now that G>0 then the general solution is:
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(Equation 5)

where A and B are arbitrary constants and k is related to E-V. 

Exercise 1:  Show by direct substitution that equation 5 is a solution to equation 3 and thus find an expression for k in terms of E, V, m, and ħ.

The general shape of this eigenfunction (equation 5) is sinusoidal and k is referred to as the wave number.  It is sometimes easier to think in terms of wavelength, 
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, instead of the wave number.  If you are dealing with electrons in units of nanometers, nm, and electron volts, eV, then the equation for wavelength is approximately:
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(Equation 6)

Exercise 2:  Derive this result.  Recall that it is only valid for electrons.

Recall that the solution to a second order differential equation usually has two arbitrary constants (in this case, A and B).  Physically those constants are usually determined by the specifics of the physical situation such as the initial position and velocity.  As you experiment with the shape and behavior of the wave function and see how it is affected by those two constants, you will begin to see what details of the problem will set the constants.  

Equation 5 gives an expression for the eigenfunction but we really want the wave function.  But we can easily write the wave function using the relation of equation 2.  In this case the resulting wave function is:
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(Equation 7)

Exponential solution

Equation 5 should be familiar to you from past studies of oscillatory motion but for quantum mechanics there is an important difference: A and B can be complex numbers.  Because of this, we could also rewrite this eigenfunction as:
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(Equation 8)

(Note: you may have also seen this equation when studying oscillatory motion in the past -  especially while studying electric circuits or electromagnetic waves - but there is a major difference.  In classical physics or electromagnetism the functions that you work with ultimately have to be real since they represent measurable physical quantities.  In that case, when you write a solution like equation 8 you really mean just the real part of that solution.  In quantum physics the wave function can truly be complex - this is because the wave function doesn't represent anything physical - only it's square has a physical meaning.  So when you write equation 8 you don’t just mean the real part, you mean the entire complex function.)

The wave function corresponding to the eigenfunction of equation 8 is:
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(Equation 9)

Exercise 3: Show that equation 7 is equivalent to equation 9 by finding C and D in terms of A and B.

These two different ways of writing the wave function are each useful in different situations.  As you will see later, we will usually use the sine-cosine form when dealing with bound states and the exponential form when dealing with scattering states but these rules are not hard and fast.  Since the two forms are equivalent, we always try to use the most convenient one at any given time.

Other forms of the solution

There are many other useful ways of writing the eigenfunction and wave function for a free particle.  Equations 7 and 9 are usually easiest to use in paper and pencil calculations but there is one other form that we will consider in this in-gagement called a phase-amplitude form.  It will be more useful when we are trying to visualize the shape and behavior of equations 5 and 7 when A and B are real.  In this form we write the eigenfunction as:
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(Equation 10)

This form is easier to visualize since a is just an amplitude of the sine function and b is just its phase.  However, equation 5 is easier to work with algebraically since neither A or B is inside the argument of the trig function.  With a little bit of trigonometric manipulation, these two equations can be shown to be equivalent.

Exercise 4:  Find a and b in equation 10 in terms of A and B in equation 5 and thus show that the two forms are equivalent.  Hint: use the trigonometric addition formulas.

Writing the eigenfunction (or wave function) with the amplitude factored out front as in equation 10 can be useful.  An amplitude is something that you are familiar with - you basically know what it means.  If you look at the wave functions of equations 7 and 9 you might notice that you could factor out an overall (complex) amplitude factor from either of those functions.  For example, you could rewrite equation 7 as:
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(Equation 11)

This ability to pull out one free parameter as an overall (complex) amplitude is a general property of the Schrödinger equation.  The following exercise shows one method of proving this assertion.

Exercise 5:  Prove that if Ψ(x,t) solves equation 1 for some given V(x) then A Ψ (x,t) also solves the same equation for the same V(x).  How does this result prove the above assertion?

Typically, you will use this overall amplitude to normalize a wave function (remember that the square of the wave function is the probability density function and that the total probability of the quanta being somewhere must be 1).  Often you can just ignore it altogether since in many problems it will cancel out at some point during the calculation.  For example, in many situations we are interested in comparing the wave function in two different regions of space so we investigate ratios and the normalization constant will drop out.  In general, people treat two wave functions that differ only by an overall amplitude factor as if they are the same wave function (since they represent the same basic physical state).  For most purposes it is relative amplitudes within a wave function that are important - not the absolute amplitude of the overall wave function.

1) Questions:  

2) You probably have an idea of what graphs (ψ vs. x) of equations 5 and 10 look like.  What do you expect a graph of equation 8 to look like?

3) The graphs of equations 7 and 9 are even more complex since a graph of ψ vs. x would change with time.  What do you think the time behavior of these graphs will be like?  Explain.

4) A classical free particle has the same velocity everywhere.  What does its probability density function look like?  Do you expect a similar probability density function for a quantum free particle?  Why or why not?

5) The energy of the quanta, E, shows up twice in the wave function (equation 7), one obvious, one not so obvious.  Where are these two appearances of E?  What effects will changing E have on the shape and behavior of the wave function?  Explain your answers.

_1038643790.unknown

_1038648904.unknown

_1038651764.unknown

_1041234016.unknown

_1041234154.unknown

_1038650499.unknown

_1038645271

_1038648884.unknown

_1038643952.unknown

_1037779147.unknown

_1037779650.unknown

_1037780513.unknown

_1038033936.unknown

_1037779538.unknown

_1037776820.unknown

